All three RNA recognition motifs and the hinge region of HuC play distinct roles in the regulation of alternative splicing

نویسندگان

  • Melissa N. Hinman
  • Hua-Lin Zhou
  • Alok Sharma
  • Hua Lou
چکیده

The four Hu [embryonic lethal abnormal vision-like (ELAVL)] protein family members regulate alternative splicing by binding to U-rich sequences surrounding target exons and affecting the interaction of the splicing machinery and/or local chromatin modifications. Each of the Hu proteins contains a divergent N-terminus, three highly conserved RNA recognition motifs (RRM1, RRM2 and RRM3) and a hinge region separating RRM2 and RRM3. The roles of each domain in splicing regulation are not well understood. Here, we investigate how HuC, a relatively poorly characterized family member, regulates three target pre-mRNAs: neurofibromatosis type I, Fas and HuD. We find that the HuC N-terminus is dispensable for splicing regulation, and the three RRMs are required for splicing regulation of each target, whereas the hinge region contributes to regulation of only some targets. Interestingly, the regions of the hinge and RRM3 required for regulating different targets only partially overlap, implying substrate-specific mechanisms of HuC-mediated splicing regulation. We show that RRM1 and RRM2 are required for binding to target pre-mRNAs, whereas the hinge and RRM3 are required for HuC-HuC self-interaction. Finally, we find that the portions of RRM3 required for HuC-HuC interaction overlap with those required for splicing regulation of all three targets, suggesting a role of HuC-HuC interaction in splicing regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two different RNA binding activities for the AU-rich element and the poly(A) sequence of the mouse neuronal protein mHuC.

HuC is one of the RNA binding proteins which are suggested to play important roles in neuronal differentiation and maintenance. We cloned and sequenced cDNAs encoding a mouse protein which is homologous to human HuC (hHuC). The longest cDNA encodes a 367 amino acid protein with three RNA recognition motifs (RRMs) and displays 96% identity to hHuC. Northern blot analysis showed that two differen...

متن کامل

The third RNA recognition motif of Drosophila ELAV protein has a role in multimerization

ELAV is a neuron-specific RNA-binding protein in Drosophila that is required for development and maintenance of neurons. ELAV regulates alternative splicing of Neuroglian and erect wing (ewg) transcripts, and has been shown to form a multimeric complex on the last ewg intron. The protein has three RNA recognition motifs (RRM1, 2 and 3) with a hinge region between RRM2 and 3. In this study, we u...

متن کامل

RegRNA: an integrated web server for identifying regulatory RNA motifs and elements

Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized. The regulat...

متن کامل

Distinct functions of the closely related tandem RNA-recognition motifs of hnRNP A1.

hnRNP A1 regulates alternative splicing by antagonizing SR proteins. It consists of two closely related, tandem RNA-recognition motifs (RRMs), followed by a glycine-rich domain. Analysis of variant proteins with duplications, deletions, or swaps of the RRMs showed that although both RRMs are required for alternative splicing function, each RRM plays distinct roles, and their relative position i...

متن کامل

Structure and expression of a plant U1 snRNP 70K gene: alternative splicing of U1 snRNP 70K pre-mRNAs produces two different transcripts.

The product of the U1 small nuclear ribonucleoprotein particle (U1 snRNP) 70K (U1-70K) gene, a U1 snRNP-specific protein, has been implicated in basic as well as alternative splicing of pre-mRNAs in animals. Here, we report the isolation of full-length cDNAs and the corresponding genomic clone encoding a U1-70K protein from a plant system. The Arabidopsis U1-70K protein is encoded by a single g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013